
Class 05 - News

You should have received HW1 by
email. If not check spam or check
website:
https://cscie26.dce.harvard.edu/~dc
e-​info113/gr/

HW2 due Sunday at 11:59pm ET
 submit from devel dir

Section: Brandon Thu 7:30-8:30PM
Off Hrs: Alexis Tue 8-9pm
Off Hrs: Bruce Sat 2-3:30PM, 7-8PM

 Sun 2-5M
HW3 is paper and pencil and is due
a week from Sunday. Will be posted
by Monday morning.
Midterm meetings next week
Meet other students in "Study
Lounge" on Zoom page

7:45

https://cscie26.dce.harvard.edu/~dce-info113/gr/
https://cscie26.dce.harvard.edu/~dce-info113/gr/

Class 5: Addresses: Arrays, Pointers, Functions

Computers store data in memory. Each piece of data has an
address. Tonight we focus on addresses: storing addresses
and using addresses in programs.

Recall the big picture:

1) User enters data into an HTML form
2) Browser sends request and data to server
3) Server examines request
4) If request is for a file, server sends back file
5) If request is for a program, server calls the program
6) The program unpacks user request data then runs
 the requested application.
7) Application combines tools using pipelines and scripts
 to produce a reply

Many tools are written in C, many store data in memory.
Today we look at details of working with memory in C.
Focus: Addresses are just numbers, memory is simple

Warmup Discussion

 discussion of strings and addresses

BIG IDEAS:
 A string is a sequence of chars in memory
 That sequence has a starting address
 The value of "abc" is the address of that array

 In int t[10];, the value of t is the address of 1st element

You can do arithmetic with addresses
 "hello" + 4 is address of 'o'

C does not check for array over-​runs

7:45

8:20

Programming with Addresses

x

456
p

456

*p = 10; // store 10 in x
(*p)++; // incr x via p

variable

pointer

address

& : "where is" operator

 : "thing pointed to by" operator (dereference)

8:20

int x; // create an int
x = 3; // store val in x

int *p; // create int ptr
p = &x; // addr of x in p

8:25
Content vs Address

Fact: Every variable has
an address: A number.
You can store and process
addresses!
 &x is address of x

: A variable that stores an address

*

Useful for: linked data structures, dynamic memory, pass by reference

11

Class 5: Addresses: Arrays, Pointers, Functions

Computer memory is a numbered sequence of char-​sized
boxes. When a program runs, the code and the data for that
program are stored somewhere in memory.

The position of each memory cell is a number: the address of
the memory cell. We learn to program with addresses.

Memory Cells and Addresses

What Do We Store in Memory?

1) Single values: char, int, float ...
2) arrays: contiguous sequence of one type
3) struct: varied types in one container
4) Functions: machine language code is stored in memory

 Every variable, of
 every type, has an
 address.

We look at programming with addresses for each of these three
shapes of storage.

Single Value Variables

I. Simple variables: ex1.c
 the compiler assigns memory cells for each variable
 The compiler assigns a size and a location: 4 bytes at L

Q1: But WHERE in memory are these variables?
A: We can as C where these are stored by using &varname
 ex1pa.c -- print addresses

Q2: Can we store these addresses?
A2: y: We need a variable type that can hold an address
The type is a pointer variable and we create them in
 ex1sa.c -- store addresses

int i; // create an int
int *p; // create ptr to int
p = &i; // store addr of i

8:30

Q3: What else can we do with pointer variables?
A3: We can use the address to get back to the original variable.The
term for this is ’dereference’. The operator is "*" applied to a pointer
variable..
 ex1dp.c -- dereference pointers

Q4: What OTHER operations can we do on pointers to simple vars?
A: compare pointers using ==,. !=, <, >, <=. >=
ex1cp.c - compare pointers

A4b: We can pass addresses to functions; functions can return addrs
ex1pf -- pass to functions

8:40

Q5: Can we get the ADDRESS of a POINTER VARIABLE?
A5: What do you think?
 What would be the notation for storing a pointer to a pointer?
 What does dereferencing do?

take temp

456

456t

p

12

8:56

9:00

*cp = 't'*cp =

u

7000

7000

int t = 12
int *p ;
p = &t;
int **u;
u = &p;

II. Pointers and Arrays

An array is a contiguous seq of memory cells, all containing values of
the same type. Each cell has an address. The array has a starting
address. The address of an array is the address of the first element.
ex2.c -- arrays

Q1: How do we use pointers to get other elements in the array?
 A1: Use normal indexing (with []). You can ALSO use *
 See ex2ia.c [optional: ex2lq.c]

 *n = p[2]; // same as n[0] = m[2]; because p is start, [2] is offset

FACT: addr[index] MEANS item at [index] spots from addr
FACT: *addr MEANS thing at addr
 addr can be an array name or a pointer variable
FACT: base[pos] === *​(base + pos)
 ex: int t[10]; *(t+3) = 2; is SAME AS t[3] = 2;

Q2: What other operations can we do with pointers to arrays?
 A2: assign, compare, increment, decrement, subtract, +/- int

Exercise: predict output of ex2ao.c -- arithmetic operations
Exercise: predict output of ex2ae.c -- arithmetic exercises
[Exercise: use pointers to write strcpy(p, q) or strchr(s,c) -- if lots of time]

9:05

(send to back)what does this do: p++, q = q + 3 ex2ae.mempic

*cp = 't'

III. Pointers to Structs

A struct is a region of memory holding several members.
A struct has an address.
Use the & operator to get the address of a struct.
Use ptr->membername to select a member using a pointer

Notation: s.membername when s is a struct
 ptr->membername when ptr points to a struct

 s1.stn vs p2->stn

Note: We could have drawn p1, p2, s1, and s2 as rectangles in our
memory diagram, but this style is also common.

9:25

9:35

BIG IDEA:
 Array: holds many value
 Pointer: holds one address

char z[12];

char *w;

a 3D array of rooms
stores things

a pointer
stores an address

Draw a picture and trace the code in ex4.c

Important questions:

 a. What does char food[4]​[20] look like? What is stored?

IV. Arrays of Pointers, Pointers to Arrays of Arrays

b. What does char *p[4] look like? What is stored?

b[i] == *​(b+i)

