Class 05 - News

« You should have received HW1 by
email. If not check spam or check
website:
https://cscie26.dce.harvard.edu/~dc

e-info113/gr/

o HW2 due Sunday at 11:59pm ET
submit from devel dir

« Section: Brandon Thu 7:30-8:30PM

o Off Hrs: Alexis Tue 8-9pm

o Off Hrs: Bruce Sat 2-3:30PM, 7-8PM

Sun 2-5M

o HW3is paper and pencil and is due
a week from Sunday. Will be posted
by Monday morning.

« Midterm meetings next week

o Meet other students in "Study
Lounge" on Zoom page

7:45

https://cscie26.dce.harvard.edu/~dce-info113/gr/
https://cscie26.dce.harvard.edu/~dce-info113/gr/

#include <stdio.h>
#include <string.h>
#include <ctype.h>
/* warm up exercises for class 05 -- addresses and memory */

int my_strlen(char s[]);
void count_upper_case();
void add_to_day();

void string_subtract();
void copy_string();
#define LEN 200

int main ()

{
count_upper_case () ;
add_to_day () ;
string_subtract () ;
copy_string();

/* this function is not incorrect, but it is poor design. why? */
void count_upper_case ()
{

int i, ncaps;

char line[LEN];

printf("enter a string of text: ");
fgets(line, LEN, stdin);

for(ncaps = 0, i = 0; i < strlen(line) ; i++)
if (isupper (line([i]))
ncaps++;

printf ("that line has %d upper case letters.\n\n", ncaps);

/* ***%* PREDICT : the output of these functions */
void add_to_day ()
{

int ans = strlen("Wednesday" + 3);

printf("length of \"Wednesday\" + 3 is %d\n\n", ans);

void string_subtract ()
{
int ans = "three" - "one";
printf ("three - one is %d\n\n", ans);

void copy_string()
{

"short™";
"a longer string of chars";

char al]
char b[]

strcpy(a, b);
printf("a = \"%s\"\n", a);
printf("b = \"%s\"\n", b);

Class 5: Addresses: Arrays, Pointers, Functions

Computers store data in memory. Each piece of data has an
address. Tonight we focus on addresses: storing addresses
and using addresses in programs.

Recall the big picture:

Al l HTML form
I\ request

reply

T connector

— ! §‘ script/pipeline

" tools

data

1) User enters data into an HTML form

2) Browser sends request and data to server

3) Server examines request

4) If request is for a file, server sends back file

5) If request is for a program, server calls the program

6) The program unpacks user request data then runs
the requested application.

7) Application combines tools using pipelines and scripts
to produce a reply

Many tools are written in C, many store data in memory.
Today we look at details of working with memory in C.
Focus: Addresses are just numbers, memory is simple

7:45

Warmup Discussion

discussion of strings and addresses

BIG IDEAS:
A string is a sequence of chars in memory
That sequence has a starting address
The value of "abc" is the address of that array

In intt[10];, the value of tis the address of 1st element

You can do arithmetic with addresses
"hello" + 4 is address of 'o'

C does not check for array over-runs

8:20

Programming with Addresses 8:20

int x; // create an int
x = 3; // store val in x

X Fact: Every variable has
| | |11 ‘ an address: A number.
You can store and process
) addresses!
4 6 variable &x is address of x
addre P

| | | 4%

pointer : A variable that stores an address

int *p; // create int ptr
p =&x; // addr of x in p

&: "where is" operator
* : "thing pointed to by" operator (dereference)

*p = 10; // store 10 in X
(*p) ++; // incr x via p

Content vs Address
8:25

Useful for: linked data structures, dynamic memory, pass by reference

Class 5: Addresses: Arrays, Pointers, Functions

Memory Cells and Addresses

Computer memory is a numbered sequence of char-sized
boxes. When a program runs, the code and the data for that
program are stored somewhere in memory.

The position of each memory cell is a number: the address of
the memory cell. We learn to program with addresses.

What Do We Store in Memory?

1) Single values: char, int, float ...

2) arrays: contiguous sequence of one type

3) struct: varied types in one container

4) Functions: machine language code is stored in memory

int x; Every variable, of
every type, has an
address.

char y[B];

struct tstop s;

hour dirf] stn[]

We look at programming with addresses for each of these three
shapes of storage.

8:30

Single Value Variables

I. Simple variables: ex1.c
the compiler assigns memory cells for each variable
The compiler assigns a size and a location: 4 bytes at L

Q1: But WHERE in memory are these variables?
A: We can as C where these are stored by using &varname
ex1pa.c -- print addresses

ci j a

HEIEEEEEEEEEEEEEE e .

Q2: Can we store these addresses?

A2:y: We need a variable type that can hold an address
The type is a pointer variable and we create them in
ex1sa.c -- store addresses

a -~ P

o 3 § q ep
ol DT T T TP T T T T TP T T T T TI TP TTTITIITIITT 0
int i; // create an int
int *p; // create ptr to int

p = &i; // store addr of i

IR EEEEEEE.

Q3: What else can we do with pointer variables?
A3: We can use the address to get back to the original variable.The
term for this is 'dereference’. The operator is "*" applied to a pointer
variable..

ex1dp.c -- dereference pointers

Q4: What OTHER operations can we do on pointers to simple vars?
A: compare pointers using ==,. I=, <, >, <=.>=
ex1cp.c - compare pointers

Adb: We can pass addresses to functions; functions can return addrs
ex1pf -- pass to functions

8:56

Q5: Can we get the ADDRESS of a POINTER VARIABLE?

A5: What do you think?
What would be the notation for storing a pointer to a pointer?
What does dereferencing do?

t N 456 |
[2] 7000 | op=top-
o

7000

intt=12
int *p ;
p = &t;
int **u;
u = &p;

take temp
9:00

Il. Pointers and Arrays 2:05

An array is a contiguous seq of memory cells, all containing values of
the same type. Each cell has an address. The array has a starting
address. The address of an array is the address of the first element.
ex2.c --arrays

q ,f_p - ., \ n
[CTTTTTTTT ﬁlc'l'\'lﬂl\ol [[T [nfefw] TeTrlel TvTofuleTo] [|

L *n = p[2] X
Q1: How do we use pointers to get other elements in the array?
A1: Use normal indexing (with [1). You can ALSO use *
See ex2ia.c [optional: ex2lqg.c]

*n=p[2]; //same as n[0] = m[2]; because p is start, [2] is offset
op = FACT addr[index] MEANS item at [index] spots from addr
FACT: *addr MEANS thing at addr
addr can be an array name or a pointer variable
FACT: base[pos] === *(base + pos)
ex: intt[10]; *(t+3)=2; isSAMEAS t[3]=2

Q2: What other operations can we do with pointers to arrays?
A2: assign, compare, increment, decrement, subtract, +/- int

Exercise: predict output of ex2ao.c -- arithmetic operations
Exercise: predict output of ex2ae.c -- arithmetic exercises

[Exercise: use pointers to write strcpy(p, q) or strchr(s,c) -- if lots of time]
after p++

Q—Q+3 .
\I\I\IIIII\IIIHI\DIIHI"HHIHI\IH\DIIH
*n = p[2]

what does this do: p++ g=q+3 ex2ae.mempic

(send to back)

9:25
Ill. Pointers to Structs

A struct is a region of memory holding several members.

A struct has an address.

Use the & operator to get the address of a struct.

Use ptr->membername to select a member using a pointer

pl p2
HEEEEnEEEN
/ N,
. sl \\\ s2
\"lvnn M oalem |
il i
o] 23 9| 12|

Note: We could have drawn p1, p2, s1, and s2 as rectangles in our
memory diagram, but this style is also common.

Notation: s.membername when s is a struct
ptr->membername when ptr points to a struct

st.stn S p2->stn

9:35

BIG IDEA:

Array: holds many value
Pointer: holds one address

char z[12];

char *w;

Building

a 3D array of rooms
« stores things

.r_,-"

123 main street

Here is where
I work

Business Card

1317 mn et

You work on a
little piece
of paper?

a pointer
« stores an address

IV. Arrays of Pointers, Pointers to Arrays of Arrays

Draw a picture and trace the code in ex4.c
Important questions:

a. What does char food[4][20] look like? What is stored?

b. What does char *p[4] look like? What is stored?

pointers

int x 51l
[p > * |

float a[5] ar
| q —» g[1]

struct trip t
| r > st

