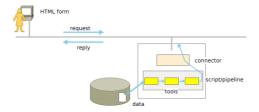
Class 05 - News

 You should have received HW1 by email. If not check spam or check website:

https://cscie26.dce.harvard.edu/~dc e-info113/gr/


- HW2 due Sunday at 11:59pm ET
- Section: Brandon Thu 7:30-8:30PM
- Off Hrs: Bruce Sat 2-3:30PM, 7-8PM
 Sun 2-5M
- By Appt: Alexis
- HW3 is paper and pencil and is due a week from Sunday. Will be posted by Monday morning.
- Meet other students in "Study Lounge" on Zoom page

```
#include <stdio.h>
#include <string.h>
#include <ctype.h>
/* warm up exercises for class 05 -- addresses and memory */
int my_strlen(char s[]);
void count_upper_case();
void add_to_day();
void string_subtract();
void copy_string();
#define LEN 200
int main()
      count_upper_case();
      add_to_day();
      string_subtract();
      copy_string();
/* this function is not incorrect, but it is poor design, why? */
void count_upper_case()
ł
      int i, ncaps;
      char line[LEN];
      printf("enter a string of text: ");
      fgets(line, LEN, stdin);
      for ( ncaps = 0, i = 0; i < strlen(line); i++)
            if ( isupper(line[i]) )
                  ncaps++;
      printf("that line has %d upper case letters.\n\n", ncaps);
/* **** PREDICT : the output of these functions */
void add_to_day()
ſ
      int ans = strlen( "Wednesday" + 3 );
      printf("length of \"Wednesday\" + 3 is %d\n\n", ans);
void string subtract()
      int ans = "three" - "one";
      printf("three - one is %d\n\n", ans);
void copy_string()
      char a[] = "short";
      char b[] - "a longer string of chars";
      strcpy(a, b);
      printf("a - \"%s\"\n", a);
      printf("b - \"%s\"\n", b);
```

Class 5: Addresses: Arrays, Pointers, Functions

Computers store data in memory. Each piece of data has an address. Tonight we focus on addresses: storing addresses and using addresses in programs.

Recall the big picture:

- 1) User enters data into an HTML form
- 2) Browser sends request and data to server
- 3) Server examines request
- 4) If request is for a file, server sends back file
- 5) If request is for a program, server calls the program
- 6) The program unpacks user request data then runs the requested application.
- 7) Application combines tools using pipelines and scripts to produce a reply

Many tools are written in C, many store data in memory. Today we look at details of working with memory in C.

Warmup Discussion

discussion of strings and addresses

BIG IDEAS:

A string is a sequence of chars in memory That sequence has a starting address The value of "abc" is the address of that array

In int t[10];, the value of t is the address of 1st element

You can do arithmetic with addresses "hello" + 4 is address of 'o'

C does not check for array over-runs

8:15

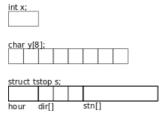
THE MAIN IDEAS: & and *

```
int x; // create an int
  x = 3; // store val in x
               р
 X
456
      variable
                  pointer
address
int *p; // create int ptr
p = &x; // addr of x in p
   whereis operator
```

thingat operator

Content vs Address

Class 5: Addresses: Arrays, Pointers, Functions

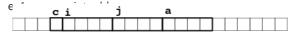

Memory Cells and Addresses

Computer memory is a numbered sequence of char-sized boxes. When a program runs, the code and the data for that program are stored somewhere in memory.

The position of each memory cell is a number: the address of the memory cell. We learn to program with addresses.

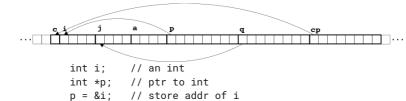
What Do We Store in Memory?

- 1) Single values: char, int, float ...
- 2) arrays: contiguous sequence of one type
- 3) struct: varied types in one container
- 4) Functions: machine language code is stored in memory


We look at programming with addresses for each of these three shapes of storage.

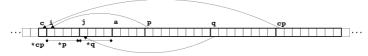
Single Value Variables

I. Simple variables: ex1.c the compiler assigns memory cells for each variable The compiler assigns a size and a location: 4 bytes at L


Q1: But WHERE in memory are these variables?

A: We can as C where these are stored by using &varname

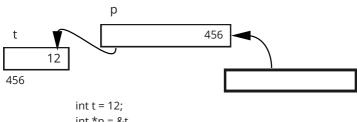
Q2: Can we store these addresses?


A2: y: We need a variable type that can hold an address The type is a pointer variable and we create them in ex1sa.c -- store addresses

A3: We can use the address to get back to the original variable. The term for this is 'dereference'. The operator is "*" applied to a pointer variable..

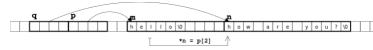
ex1dp.c -- dereference pointers

Q4: What OTHER operations can we do on pointers to simple vars? A: compare pointers using ==, !=, <, >= = = ex1cp.c - compaire pointers


A4b: We can pass addresses to functions; functions can return addrs ex1pf -- pass to functions

Q5: Can we get the ADDRESS of a POINTER VARIABLE?

A5: What do you think?


What would be the notation for storing a pointer to a pointer What does dereferencing do?

8:40 take temp

II. Pointers and Arrays

An array is a contiguous seq of memory cells, all containing values of the same type. Each cell has an address. The array has a starting address. The address of an array is the address of the first element. ex2.c -- arrays

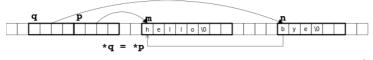
Q1: How do we use pointers to get other elements in the array?

A1: Use normal indexing (with []). You can ALSO use * See ex2ia.c [optional: ex2lq.c]

*n = p[2]; // same as n[0] = m[2]; because p is start, [2] is offset

FACT: addr[index] MEANS item at [index] spots from addr

FACT: *addr MEANS thing at addr

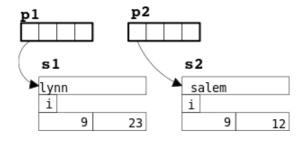

addr can be an array name or a pointer variable

FACT: base[pos] === *(base + pos)

ex: int t[10]; *(t+3) = 2; is SAME AS t[3] = 2;

Q2: What other operations can we do with pointers to arrays? A2: assign, compare, increment, decrement, subtract, +/- int

Exercise: predict output of ex2ao.c -- arithmetic operations Exercise: predict output of ex2ae.c -- arithmetic exercises Exercise: use pointers to write strcpy(p, q) or strchr(s,c)


III. Pointers to Structs

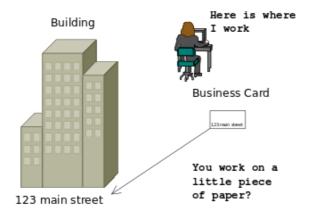
A struct is a region of memory holding several members.

A struct has an address.

Use the & operator to get the address of a struct.

Use ptr->membername to select a member using a pointer

Notation: s.membername ptr->membername

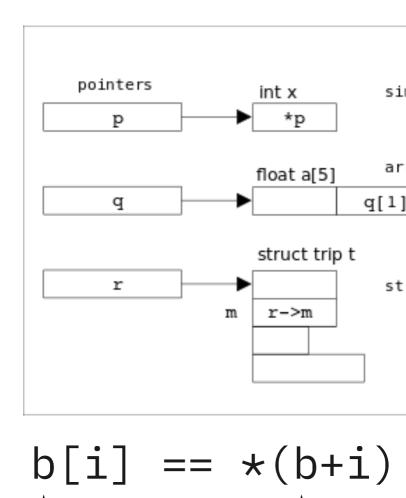

when s is a struct when ptr points to a struct

s1.stn vs p2->stn Note: We could have drawn p1, p2, s1, and s2 as rectangles in our memory diagram, but this style is also common.

BIG IDEA:

Arrays hold data Pointers hold addrs

char z[12];											
char *w;											



IV. Arrays of Pointers, Pointers to Arrays of Arrays Draw a picture and trace the code in ex4.c

Important questions:

a. What does char food[4][20] look like? What is stored?

b. What does char *p[4] look like? What is stored?

