
Class 05 - News

You should have received HW1 by
email. If not check spam or check
website:
https://cscie26.dce.harvard.edu/~dc
e-​info113/gr/

HW2 due Sunday at 11:59pm ET
 submit from devel dir

Section: Brandon Thu 7:30-8:30PM
Off Hrs: Bruce Sat 3-4:30PM

 Sun 2-5M
HW3 is paper and pencil and is due
a week from Sunday. Will be posted
by Monday morning.
Midterm meetings next week
Meet other students in "Study
Lounge" on Zoom page

8:15

Notes
 1) will run 15 min late (warmup vs. videos

https://cscie26.dce.harvard.edu/~dce-info113/gr/
https://cscie26.dce.harvard.edu/~dce-info113/gr/

Class 5: Addresses: Arrays, Pointers, Functions

Computers store data in memory. Each piece of data has an
address. Tonight we focus on addresses: storing addresses
and using addresses in programs.

Recall the big picture:

1) User enters data into an HTML form
2) Browser sends request and data to server
3) Server examines request
4) If request is for a file, server sends back file
5) If request is for a program, server calls the program
6) The program unpacks user request data then runs
 the requested application.
7) Application combines tools using pipelines and scripts
 to produce a reply

Many tools are written in C, many store data in memory.
Today we look at details of working with memory in C.
Focus: Addresses are just numbers, memory is simple

Warmup Discussion

 discussion of strings and addresses

BIG IDEAS:
 A string is a sequence of chars in memory
 That sequence has a starting address
 The value of "abc" is the address of that array

 In int t[10];, the value of t is the address of 1st element

You can do arithmetic with addresses
 "hello" + 4 is address of 'o'

C does not check for array over-​runs

8:15

8:35

String Literals: "abc"

 When a C program contains a string of chars inside double
quotes, as in "abc", the compiler finds a piece of memory, store
those chars in that piece of memory, and records the address o
that piece of memory. The expression "abc" is replaced with a
number, the address of the string.
Summary: A literal string is a number.

Programming with Addresses

x

456
p

456

*p = 10; // store 10 in x
(*p)++; // incr x via p

variable

pointer

3

address

& : "where is" operator

 : "thing pointed to by" operator (dereference)

8:35

int x; // create an int
x = 3; // store val in x

int *p; // create int ptr
p = &x; // addr of x in p

8:45
Content vs Address

Fact: Every variable has
an address: A number.
You can store and process
addresses!
 &x is address of x

: A variable that stores an address

*

Useful for: linked data structures, dynamic memory, pass by reference

Class 5: Addresses: Arrays, Pointers, Functions

Computer memory is a numbered sequence of char-​sized
boxes. When a program runs, the code and the data for that
program are stored somewhere in memory.

The position of each memory cell is a number: the address of
the memory cell. We learn to program with addresses.

Memory Cells and Addresses

What Do We Store in Memory?

1) Single values: char, int, float ...
2) arrays: contiguous sequence of one type
3) struct: varied types in one container
4) Functions: machine language code is stored in memory

 Every variable, of
 every type, has an
 address.

We look at programming with addresses for each of these three
shapes of storage.

8:55

8:45

Single Value Variables

I. Simple variables: ex1.c
 the compiler assigns memory cells for each variable
 The compiler assigns a size and a location: 4 bytes at L

Q1: But WHERE in memory are these variables?
A: We can as C where these are stored by using &varname
 ex1pa.c -- print addresses

Q2: Can we store these addresses?
A2: y: We need a variable type that can hold an address
The type is a pointer variable and we create them in
 ex1sa.c -- store addresses

int i; // create an int
int *p; // create ptr to int
p = &i; // store addr of i

8:55

Q3: What else can we do with pointer variables?
A3: We can use the address to get back to the original variable.The
term for this is ’dereference’. The operator is "*" applied to a pointer
variable..
 ex1dp.c -- dereference pointers

Q4: What OTHER operations can we do on pointers to simple vars?
A: compare pointers using ==,. !=, <, >, <=. >=
ex1cp.c - compare pointers

A4b: We can pass addresses to functions; functions can return addrs
ex1pf -- pass to functions

9:10

Q5: Can we get the ADDRESS of a POINTER VARIABLE?
A5: What do you think?
 What would be the notation for storing a pointer to a pointer?
 What does dereferencing do?

take temp

456

456t

p

12

8:30

9:35

u

how to define u?
 int **u;

how to set a value for u?
 u = &p; // yep!

how to use u?

int t = 12;
int *p = &t;

2024

&&u = 15; // 1
**u = 15; // 1 1 1
*u = 15;

2024

II. Pointers and Arrays

An array is a contiguous seq of memory cells, all containing values of
the same type. Each cell has an address. The array has a starting
address. The address of an array is the address of the first element.
ex2.c -- arrays

Q1: How do we use pointers to get other elements in the array?
 A1: Use normal indexing (with []). You can ALSO use + and *
 See ex2ia.c [optional: ex2lq.c]

 *n = p[2]; // same as n[0] = m[2]; because p is start, [2] is offset

FACT: addr[index] MEANS item at [index] spots from addr
FACT: *addr MEANS thing at addr
 addr can be an array name or a pointer variable
FACT: base[pos] === *​(base + pos)
 ex: int t[10]; *(t+3) = 2; is SAME AS t[3] = 2;

Q2: What other operations can we do with pointers to arrays?
 A2: assign, compare, increment, decrement, subtract, +/- int

Exercise: predict output of ex2ao.c -- arithmetic operations
Exercise: predict output of ex2ae.c -- arithmetic exercises
[Exercise: use pointers to write strcpy(p, q) or strchr(s,c) -- if lots of time]

9:45

(send to back)what does this do: p++, q = q + 3 ex2ae.mempic

9:35

III. Pointers to Structs

A struct is a region of memory holding several members.
A struct has an address.
Use the & operator to get the address of a struct.
Use ptr->membername to select a member using a pointer

Notation: s.membername when s is a struct
 ptr->membername when ptr points to a struct

 s1.stn vs p2->stn

Note: We could have drawn p1, p2, s1, and s2 as rectangles in our
memory diagram, but this style is also common.

9:45

9:55

9:55

BIG IDEA:
 Array: holds many value
 Pointer: holds one address

char z[12];

char *w;

a 3D array of rooms
stores things

a pointer
stores an address

10:00

Draw a picture and trace the code in ex4.c

Important questions:

 a. What does char food[4]​[20] look like? What is stored?

IV. Arrays of Pointers, Pointers to Arrays of Arrays

b. What does char *p[4] look like? What is stored?

10:00

10:10

b[i] == *​(b+i)

