This is the new version. | think it wll
Recal | nenory:

Al'l data and code are stored in nenory, so al

a big array of bytes "menory cells".

go wel l.

Each with an address.
vari abl es and al

functions have addresses.

Callows us to work with the actua

nuneri cal

addresses of these nmenory cells.

Way is this useful?
a. you can put/get
- only really usefu

data from specific nuneric addresses

for system | evel/hardware contro

b. pass by reference: tell a functon WHERE data are stored : USEFUL

c. linked data structures : WHERE is the next |ink or subtree :USEFUL
d. dynamic nmenory allocation: for next tine.

e. efficient traversal of arrays : not any nore -- conpilers are snart

Qutline for today: What can we store? How can use use the

Ans: sinple variables (storage for one int,

r addresses?

a char, a float)
arrays (a sequence of contiguous storage cells of one type)
struct (a collection of varied types nmore or |ess adjacent)

ons)

functions (a sequence of nachine | anguage instructi

For each of these, we shal
we shall see what we can do with those addresses
I. Sinple variables : exl.c
int main()
{

int i,j;

char c;

float a;

i = 2;
o=,
if (i ==j)
C= 't
printf("i=%, a=%\n", i,j,c,a)

j =%, c=%,

}

Not hi ng new here.

see how to obtain their address and

QLl: But WHERE in nenory are these variabl es?

A: we can ask C where these are stored by using the & operator.

#i ncl ude <stdio. h> /1l exlpa.c: print addresses

t ypedef unsigned | ong ul;

int main()
int i,j;
char c;
float a;

i = 2;

io=i

if (i ==j)
=

o

printf("i=%d, j=%, c=%, a=%\n", i,]j
printf("locations are:\n");
printf("i=%, j=%, c=%, a=%\n", &,
printf("i at %u, j at %u, c at % u,
(ul)& ,(ul)&, (ul)&e, (ul)&a)
}

@: Can we store these addresses?
A2:

,C,a);

& , &c, &a) ;
a at %u\n",

y: we need a variable type that can hold an address.

the type is a pointer variable, and we create
and use the values to print

/* exlsa.c: store addresses */

#i ncl ude <stdio. h>

t ypedef unsigned | ong ul;

them as foll ows

int main()
{
int i,j;
char c;
int *p; /* p holds address of an int */
int *q; /* q holds address of an int */
char *cp;
p = &; /* get address and store it */
q=&; /* get address and store it */
cp = &c;
i = 3;
o=
if (i ==7j)
c="t";
/* now to print themout */
printf("i=%, j=%, c=%\n", i,j,c);
printf("locations are:\n");
printf("i at %, j at %, ¢ at %\n", p, q, cp);

Di scussion: W can draw these variables in our menory di agram as foll ows.
Each pointer is a variable, so it occupies a space in nenory. The

value IN the variable is the address of a different variable.. W

draw that correspondence with an arrow.

@3: Wat else can we do with pointer variabl es?
A3: W can use the address to get back to the original variable.
The termfor this is "dereference’. The operator is "*" applied
to a pointer variable..
/* exldp.c: dereference pointers */

#i ncl ude <stdio. h>

t ypedef unsigned |ong ul;

int main()
int i,j;
char c;
int *p; /* p holds address of an int */
int *q; /* g holds address of an int */
char *cp;
p = &; /* get address and store it */
q=&; /* get address and store it */
cp = &c;
p =3; / sane as: i = 3; */
*q = *p; /* same as: | = i; */
if (*p ==*q) /* same as if (i ==]) */
cp = 't’ / sane as c="t"; */

/* now to print themout */

printf("i=%, j=%l, c=%\n", i,j,c);
printf("locations are:\n");
printf("i at %, j at %, c at %\n", p, q, cp);

: What OTHER operations can we do on pointers to sinple variabl es?
A4: conpare pointers using ==, = < > ...

/* exlcp.c: conpare pointers */
#i ncl ude <stdio. h>

t ypedef unsigned |ong ul;

int main()
int i,j;
char c;
int *p; /* p holds address of an int */
int *q; /* q hol ds address of an int */
char *cp;
p = & ; /* get address and store it */
= & ; /* get address and store it */
cp = &c;
p =3; / same as: i = 3; */
*q = *p; /* sane as: | = i; */
if (*p ==*q) /* same as if (i ==j) */
cp ='t’ ; / same as c="t"; */
it (p==q)
printf("p equals g\n");
el se

printf("p does not equal g\n");
/* now to print themout */

printf("i=%, j=%, c=%\n", i,j,c);
printf("locations are:\n");

printf("i at %, j at %, c at %\n", p, q, cp);
return O;

Adb: We can pass pointers to functions:
/* exlpf.c: pass to functions */
#i ncl ude <stdio. h>

void conpare(int *, int *);
void display(int *, char *);

int main()
{
int i,j;
char c;
int *p; /* p holds address of an int */
int *q; /* g holds address of an int */
char *cp;
p = &; /* get address and store it */
q=&; /* get address and store it */
cp = &c;
p =3; / sane as: i = 3; */
*q = *p; /* same as: | = i; */
if (*p==+*q)
c ="t";
conmpare(p, d);
di splay(p, cp);
}
/*
* conpare values AND addrs of two int ptrs
*/
voi d conpare(int *pl, int *p2)
{
if (*pl == *p2) /* same as if (i ==7]) */
printf("val ues of pointees are equal\n");
if (pl==p2)
printf("both point to sane place\n");
el se
printf("point to different places\n");
}
void display(int *ip, char *cp)
{
printf("values are: % %\n", *ip, *cp);
printf("addrs are % %\n", ip, cp);
}

B: a pointer is also a sinple, single variable, can we take |ITS address?
A5: VWhat do you think? What would be the notation to create one? Wat
does dereferencing do?

Il: Pointers and Arrays:

An array is a contiguous sequ of menory cells, all containing val ues of

t he

sane type. Each cel

I has an address, the array has a starting address.

We say that the address of the array is the address of the first el enent.

/* ex2.c: arrays

*/

#i ncl ude <stdi o. h>

int main()

{

char nf 20]

char nf]

char *D,
p = &n0];
qg=n

if (*p ==

"hel | 0";
"how are you?";

*q;
/* ORp =m*/

*q)

printf("val ues are same\n");
if (p==0)
printf("addresses are sane\n");

el se

printf("addresses differ\n");

printf("the char at mis %\n", *m;
printf("the string at mis %\n", m;
printf("the address of mis %\n", m;

}

Ql: How can we use the pointer to get other elements in the array?

Al:

Not e:
Not e:

ok.

FACT:
FACT:

use normal indexing

not ati on.

/* ex2ia.c index into arrays */

#i ncl ude <stdio. h>

int main()
{
char nf20] = "hello";
char nf] = "how are you?";
char *p, *q;
p = &fo0]; /* ORp =m*/
q=n
printf("chars in nf2] and nf4] are % %\n", p[2], p[4]);
*n = p[2];
printf("string at nis %\n", Q);
}

addr ess[i ndex]
*addr ess

we used n with a *.
* is for addresses. The nane of an array is an address, so that is

But | thought that * is for pointers!

MEANS the item’index’ spots from address
MEANS t he thing at address.
Address can be an array nane or a pointer var val ue

Look at this code: What do you think it prints out?

/* ex2ao.c arithnetic operations */

#i ncl ude <stdio. h>

int main()
{
char n{ 20] = "hello";
char nll = "how are you?";

char *p, *Q;
p = &dfo]; /[* ORp =m*/
q n;

printf("chars in n[2] and n{4] are % %\n",

printf("string at nis %\n", q);

p++;
q=9q+3;

printf("chars in nf2] and nf4] are % %\n",

printf("string at nis %\n", q);

Here i s another exanple to ponder:

/* ex2ae.c arithnmetic exercises */

#i ncl ude <stdi o. h>

int main()
{
int t[5];
int *p;
int i;
p =t
for(i=0; i<5; i++){
*p :i * 2’
p++;
}
for(i=0; i<5; i++){
printf("t[%] = %\n", i, t[i]);
}
p=t-1

printf("t is at %, p holds value %\n", t,
printf("p points to value\n", *p);
printf("(p+2)[0] = %\n", (p+2)[0]);
printf("(p-2)[4] = %\n", (p-2)[4]);
printf("(p+10)[-8] = %\n", (p+10)[-8]);

}

Usi ng pointers to process arrays of chars: strcpy

@: What other operations can we do with pointers to arrays?
assign, conparison, increment, decrement, +, -

pl2],

pl2],

p).

p[4]);

p[4]);

Structs occupy nmenory, therefore a struct has an address.
to get the address and the special
a pointer:

Poi nters and Structs

(ex3.¢)

/* ex3.c: pointers to structs */
#i ncl ude <stdio. h>
#include <string. h>

struct tine

{

struct

{

} .

} .

int hr, m;

tstop

char stn[20];
char dir;
struct tinme when;

void print_event(struct tstop *);

{

}
/

nt

*

mai n()

struct tstop sl1, s2;
struct tstop *pl, *p2;

pl = &s1;
p2 = &s2;

strcpy(sl.stn, "lynn");
sl.dir ="i";

sl.when. hr = 9;
sl.when.m = 23;

strcpy(p2->stn, "salem');

p2->dir ="i";
p2- >when. hr = 9;
p2->when. Mm = 12;

print_event(&1);
print_event(p2);
return O;

* print out an event

*/

void print_event(struct tstop *p)

{

printf("station: %\n", p->stn);
printf(" dir: %\n", p->dir);

printf(" when: %l: %6\ n", p->when. hr,

p- >when. m) ;

We use the &
notation -> to select nenbers from

IV: Arrays of pointers, pointers to arrays of arrays
Draw a picture and trace this code: (ex4.c)
#i ncl ude <stdio. h>

int main()

{
char food[4] [20] ;
int i;

strcpy(food[0], "peas");
strcpy(food[1], "carrots");
strcpy(food[2], "kale");
strcpy(food[3], "lettuce");

for(i=0; i<4; i++)

{
printf("item% is %\n", i, food[i]);
}
what _do_i _do(f ood);
}
voi d what _do_i _do(char a[4][20])
{
char *pl 4] ;
int i;

for(i=0 ; i<4 ; i++)

{
pli] = &[3-i];
}
for(i=0; i<4 ; i++)
{
printf("in array p, item% is %\n", i, p[i]+i);
}

